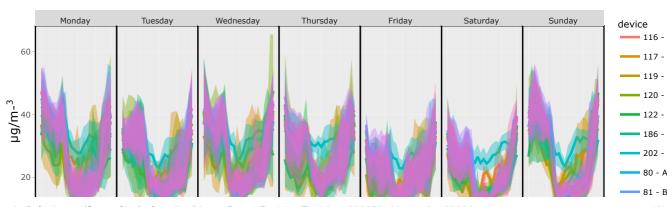


Luftqualität in Kirchheim

Analyse der Schadstoffverteilungen

Juli 2022

Kalenderwochen: 26, 27, 28, 29, 30


Zusammenfassung

Im Juli 2022 wurden in Kirchheim gemäßigte Schadstoffkonzentrationen gemessen. NO $_2$ -Konzentrationen variierten zwischen 9 und 78 µg/m³ mit Durchschnittswerten um 26 µg/m³. Peaks wurden zwischen 6 und 8 Uhr morgens und nach 20 Uhr abends erreicht. Ozon-Konzentrationen erreichten 450 µg/m³ mit Durchschnittswerten um 97 µg/m³. Am Standort Alter Ortskern wurden die höchsten Ozon-Werte gemessen von 495 µg/m³. An allen Standorten wurden ähnliche zeitliche Trends gemessen; 24-stündige Zyklen mit niedrigeren Werten vormittags und höheren Werten nachmittags. PM $_2$.5-Werte blieben unter 40 µg/m³ mit Durchschnittswerten von 8 µg/m³. PM $_1$ 0-Werte blieben unter 60 µg/m³ mit Durchschnittswerten von 14 µg/m³. [1]

Stickstoffdioxid - NO₂

Durchschnittliche zeitliche Muster der NO₂-Belastung

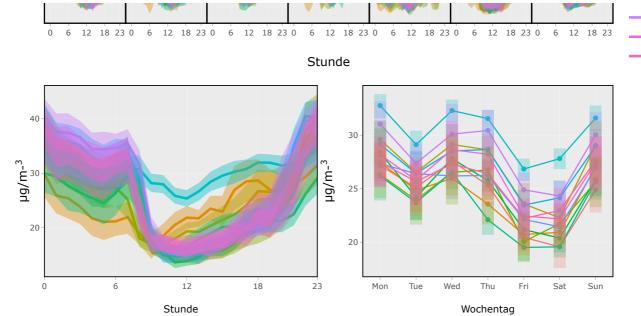


Abb. 1 Zeitliche Muster der NO₂-Konzentrationen. Oben: durchschnittlicher Tagesverlauf der Konzentrationen für verschiedene Wochentage. Unten links: Tagesverlauf der Konzentrationen gemittelt über alle Wochentage. Unten rechts: Durchschnittliche Tageskonzentrationen für verschiedene Wochentage. Die gefärbten Flächen zeigen die 95%-Konfidenzintervalle der Mittelwerte.

NO₂ - Zeitliche Übersicht mit Wetterparametern

WVV TEMP HUM

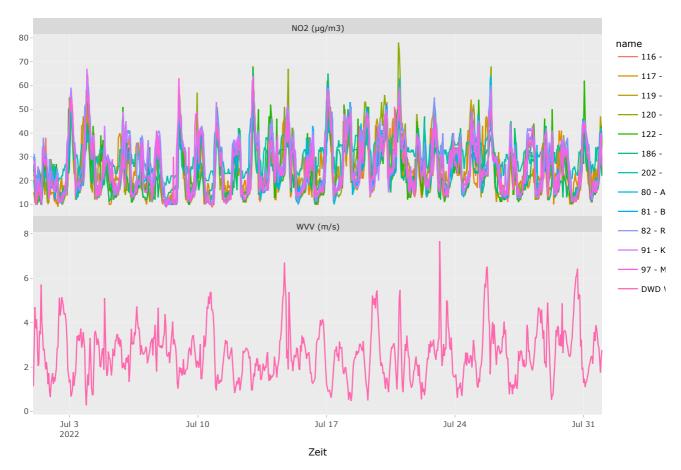


Abb. 2 Zeitlicher Trend der NO₂-Konzentrationen mit Wetterparametern.Wetterbedingungen können einen starken Einfluss auf die ambienten Luftschadstoffkonzentrationen haben, z.B. zeigen sich bei starkem Wind meist niedrige Schadstoffkonzentrationen.

NO₂ - Vergleich mit Verkehrsdaten

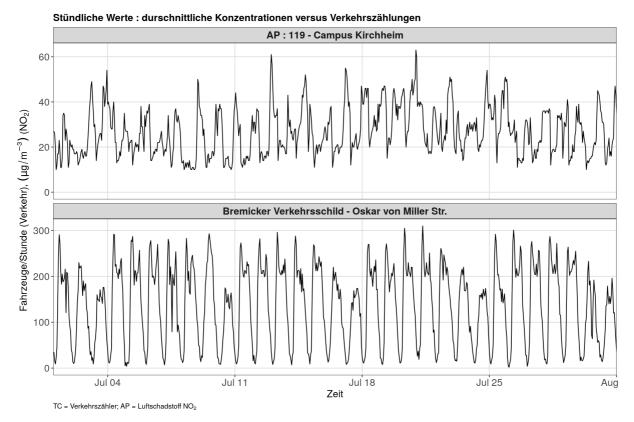


Abb. 3 Zeitlicher Trend der NO2-Konzentrationen mit Verkehrsdaten. Zu sehen sind die stündlichen Mittelwerte der Schadstoffkonzentrationen gegenüber der Anzahl von Fahrzeugen innerhalb einer Stunde.

Verteilung der NO₂-Schadstoffkonzentrationen

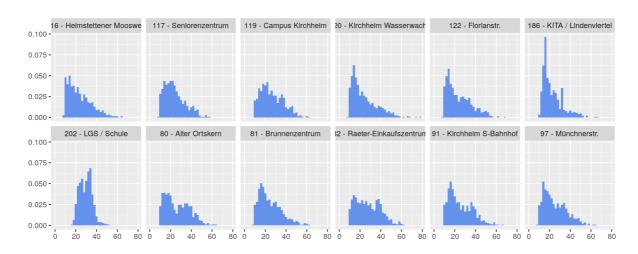


Abb. 4 Histogramme zur Darstellung der Häufigkeiten von NO_2 -Schadstoffkonzentrationen (Stundenmittelwerte) an den verschiedenen Messpunkten.

NO₂ - Auswertung nach Winddaten [2]

Data: [May 2022; July 2022]

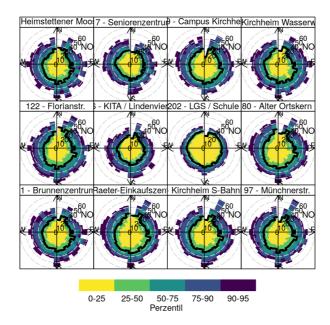


Abb. 5 Verteilung der Schadstoffkonzentrationen nach Windrichtung. Der Median nach Windrichtung wird durch die schwarze Linie angezeigt. Eine starke Ausbuchtung in eine Richtung gibt an, dass es bei Wind aus dieser Richtung gehäuft zu hohen Schadstoffkonzentrationen kommt.

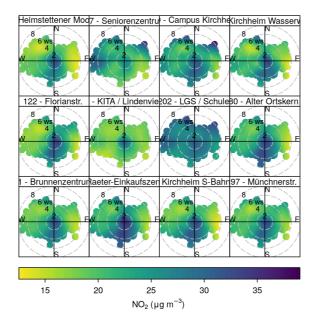


Abb. 6 Mittlere Schadstoffkonzentrationen in Abhängigkeit von Windrichtung und Windgeschwindigkeit. Der Mittelwert der Schadstoffkonzentration wird durch die Farbe angezeigt, die Windstärke durch Entfernung vom Zentrum. Bei lokalen Emissionsquellen sieht man hier meist eine dunkle Färbung im Zentrum, d.h. höhere Schadstoffkonzentrationen bei Windstille. Sieht man eine dunkle Ausbuchtung in eine Richtung deutet dies auf eine entfernte Quelle in dieser Richtung hin, da stärkerer Wind aus dieser Richtung mit höheren Schadstoffkonzentrationen einhergeht.

NO₂ - Mittelwerte

Geräte-ID	Minimum	Mittelwert	Maximum
80 - Alter Ortskern	10	27	64
81 - Brunnenzentrum	9	25	62
82 - Raeter-Einkaufszentrum	10	28	63
91 - Kirchheim S-Bahnhof	10	26	67

Geräte-ID	Minimum	Mittelwert	Maximum
97 - Münchnerstr.	9	26	64
116 - Heimstettener Moosweg	9	24	65
117 - Seniorenzentrum	9	24	58
119 - Campus Kirchheim	10	27	63
120 - Kirchheim Wasserwacht	9	24	78
122 - Florianstr.	9	25	68
186 - KITA / Lindenviertel	11	23	66
202 - LGS / Schule	17	30	53

Ozon - O₃

Durchschnittliche zeitliche Muster der O₃-Belastung

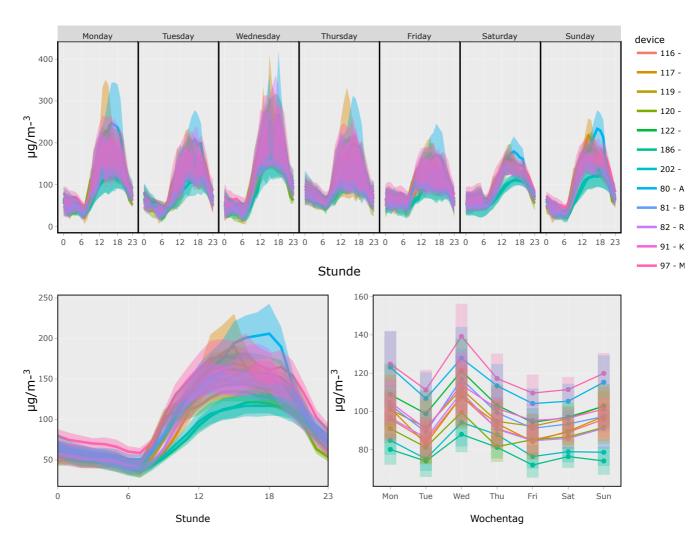


Abb. 7 Zeitliche Muster der O₃-Konzentrationen. Oben: durchschnittlicher Tagesverlauf der Konzentrationen für verschiedene Wochentage. Unten links: Tagesverlauf der Konzentrationen gemittelt über alle Wochentage. Unten rechts: Durchschnittliche Tageskonzentrationen für verschiedene Wochentage. Die gefärbten Flächen zeigen die 95%-Konfidenzintervalle der Mittelwerte.

O_3 - Zeitliche Übersicht mit Wetterparametern

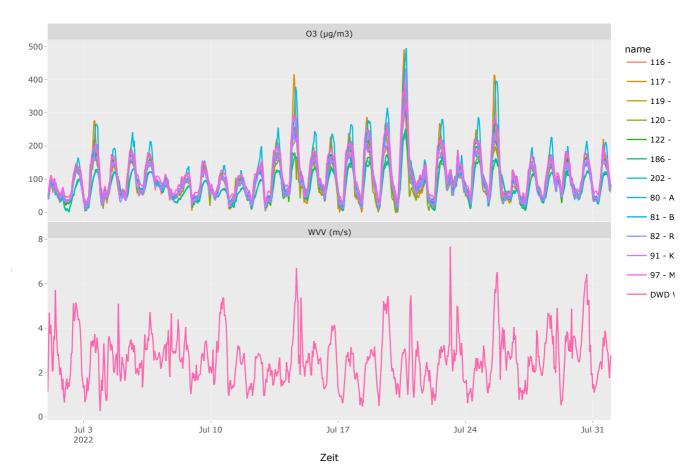


Abb. 8 Zeitlicher Trend der O_3 -Konzentrationen mit Wetterparametern. Wetterbedingungen können einen starken Einfluss auf die ambienten Luftschadstoffkonzentrationen haben, z.B. zeigen sich bei starkem Wind meist niedrige Schadstoffkonzentrationen.

Verteilung der O₃-Schadstoffkonzentrationen

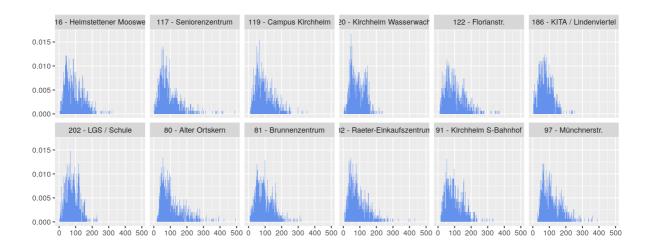


Abb. 9 Histogramme zur Darstellung der Häufigkeiten von O₃-Schadstoffkonzentrationen (Stundenmittelwerte) an den verschiedenen Messpunkten.

O₃ - Auswertung nach Winddaten [2]

Data : [May 2022 ; July 2022]

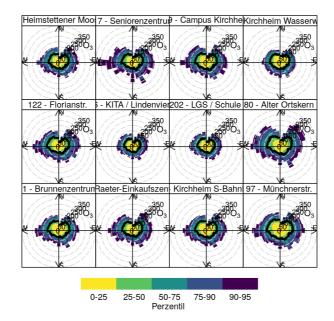


Abb. 10 Verteilung der Schadstoffkonzentrationen nach Windrichtung. Der Median nach Windrichtung wird durch die schwarze Linie angezeigt. Eine starke Ausbuchtung in eine Richtung gibt an, dass es bei Wind aus dieser Richtung gehäuft zu hohen Schadstoffkonzentrationen kommt.

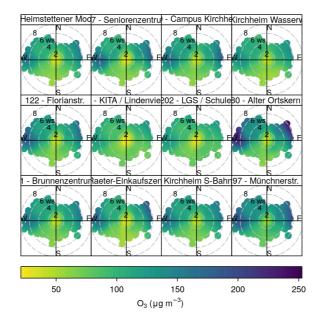


Abb. 11 Mittlere Schadstoffkonzentrationen in Abhängigkeit von Windrichtung und Windgeschwindigkeit.

O₃ - Mittelwerte

Geräte-ID	Minimum	Mittelwert	Maximum
80 - Alter Ortskern	21	113	495
81 - Brunnenzentrum	8	98	319
82 - Raeter-Einkaufszentrum	6	92	433
91 - Kirchheim S-Bahnhof	16	100	334

Geräte-ID	Minimum	Mittelwert	Maximum
97 - Münchnerstr.	28	119	392
116 - Heimstettener Moosweg	5	93	320
117 - Seniorenzentrum	0	94	491
119 - Campus Kirchheim	10	99	353
120 - Kirchheim Wasserwacht	0	88	237
122 - Florianstr.	7	103	372
186 - KITA / Lindenviertel	0	78	252
202 - LGS / Schule	2	82	230

Feinstaub - PM_{2.5}

Durchschnittliche zeitliche Muster der PM_{2,5}-Belastung

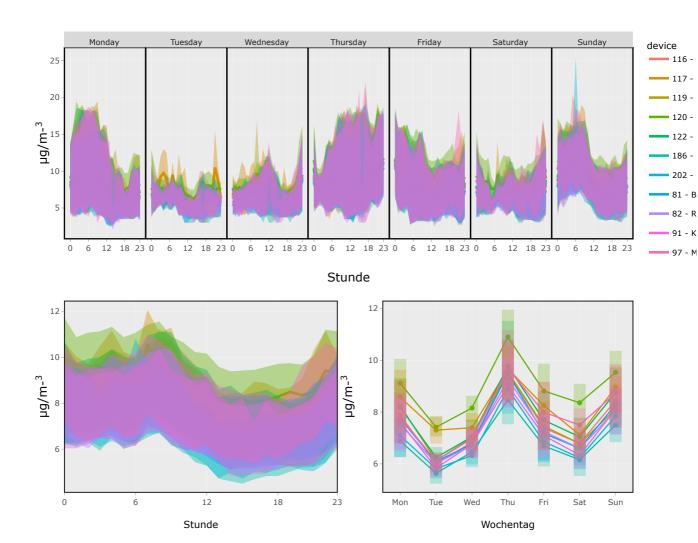


Abb. 12 Zeitliche Muster der PM_{2.5}-Konzentrationen. Oben: durchschnittlicher Tagesverlauf der Konzentrationen für verschiedene Wochentage. Unten links: Tagesverlauf der Konzentrationen gemittelt über alle Wochentage. Unten rechts: Durchschnittliche Tageskonzentrationen für verschiedene Wochentage. Die gefärbten Flächen zeigen die 95%-Konfidenzintervalle der Mittelwerte.

$\mathsf{PM}_{2.5}$ - Zeitliche Übersicht mit Wetterparametern

WVV TEMP HUM

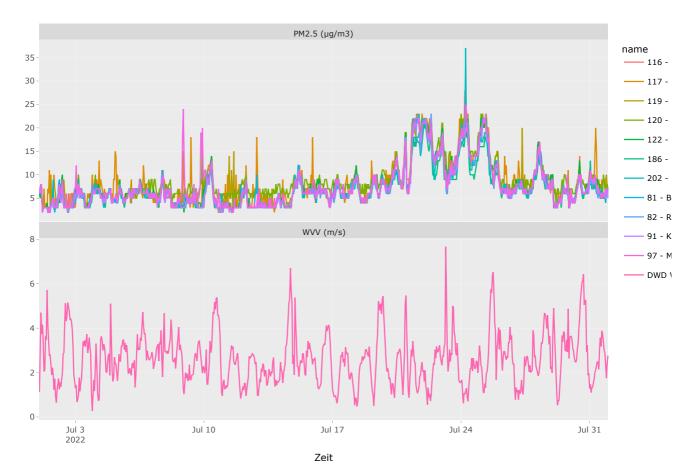


Abb. 13 Zeitlicher Trend der $PM_{2.5}$ -Konzentrationen mit Wetterparametern. Wetterbedingungen können einen starken Einfluss auf die ambienten Luftschadstoffkonzentrationen haben, z.B. zeigen sich bei starkem Wind meist niedrige Schadstoffkonzentrationen.

Verteilung der PM_{2.5}-Schadstoffkonzentrationen

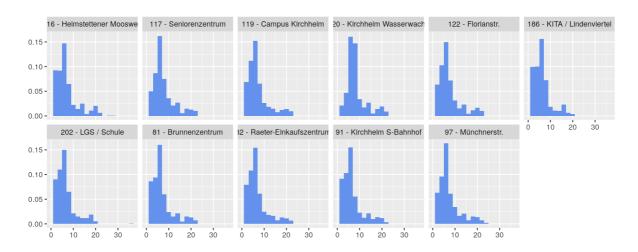


Abb. 14 Histogramme zur Darstellung der Häufigkeiten von PM_{2.5}-Schadstoffkonzentrationen (Stundenmittelwerte) an den verschiedenen Messpunkten.

PM_{2.5} - Auswertung nach Winddaten [2]

Data: [May 2022; July 2022]

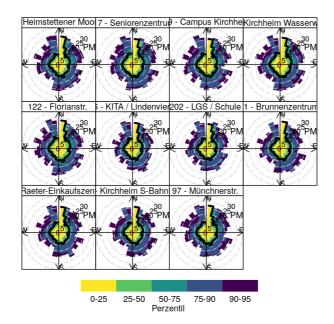


Abb. 15 Verteilung der Schadstoffkonzentrationen nach Windrichtung. Der Median nach Windrichtung wird durch die schwarze Linie angezeigt. Eine starke Ausbuchtung in eine Richtung gibt an, dass es bei Wind aus dieser Richtung gehäuft zu hohen Schadstoffkonzentrationen kommt.

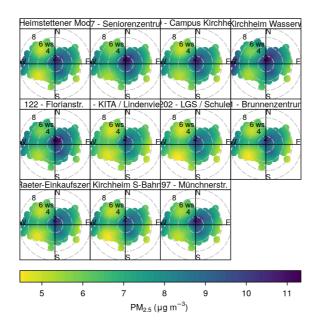


Abb. 16 Mittlere Schadstoffkonzentrationen in Abhängigkeit von Windrichtung und Windgeschwindigkeit. Der Mittelwert der Schadstoffkonzentration wird durch die Farbe angezeigt, die Windstärke durch Entfernung vom Zentrum. Bei lokalen Emissionsquellen sieht man hier meist eine dunkle Färbung im Zentrum, d.h. höhere Schadstoffkonzentrationen bei Windstille. Sieht man eine dunkle Ausbuchtung in eine Richtung deutet dies auf eine entfernte Quelle in dieser Richtung hin, da stärkerer Wind aus dieser Richtung mit höheren Schadstoffkonzentrationen einhergeht.

PM_{2.5} - Mittelwerte

Geräte-ID	Minimum	Mittelwert	Maximum
81 - Brunnenzentrum	2	7	22
82 - Raeter-Einkaufszentrum	2	7	23

Geräte-ID	Minimum	Mittelwert	Maximum
91 - Kirchheim S-Bahnhof	2	7	23
97 - Münchnerstr.	2	8	25
116 - Heimstettener Moosweg	2	8	28
117 - Seniorenzentrum	2	8	23
119 - Campus Kirchheim	2	8	23
120 - Kirchheim Wasserwacht	2	9	23
122 - Florianstr.	2	8	23
186 - KITA / Lindenviertel	2	7	21
202 - LGS / Schule	2	7	37

Feinstaub - PM₁₀

Durchschnittliche zeitliche Muster der PM₁₀-Belastung

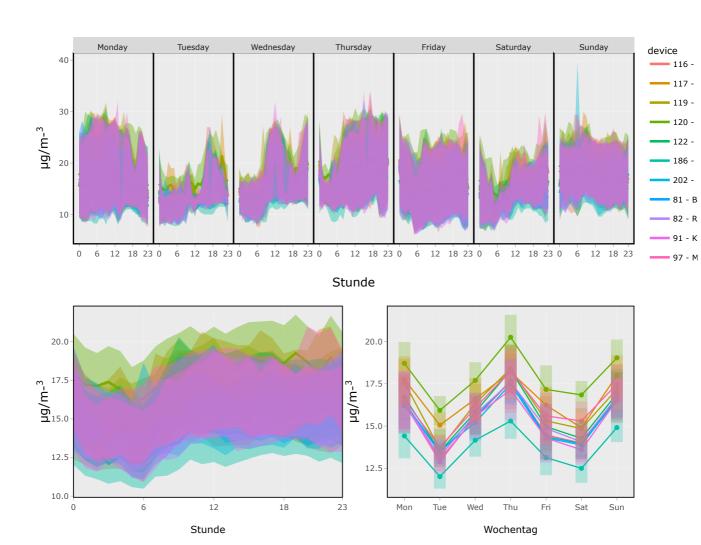


Abb. 17 Zeitliche Muster der PM_{10} -Konzentrationen. Oben: durchschnittlicher Tagesverlauf der Konzentrationen für verschiedene Wochentage. Unten links: Tagesverlauf der Konzentrationen gemittelt über alle Wochentage. Unten rechts: Durchschnittliche Tageskonzentrationen für verschiedene Wochentage. Die gefärbten Flächen zeigen die 95%-Konfidenzintervalle der Mittelwerte.

PM₁₀ - Zeitliche Übersicht mit Wetterparametern

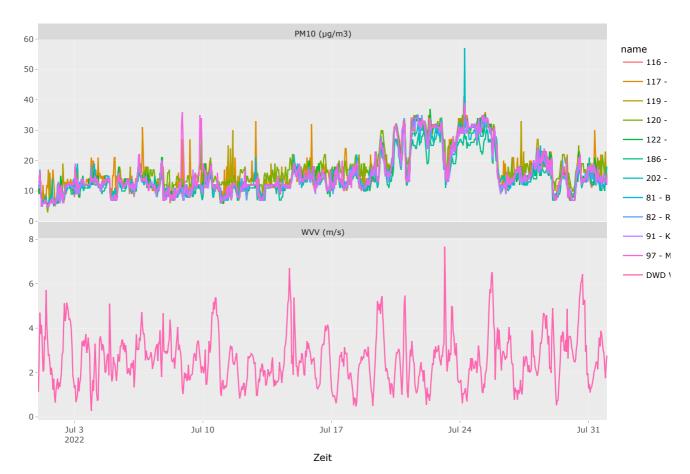


Abb. 18 Zeitlicher Trend der PM_{10} -Konzentrationen mit Wetterparametern. Wetterbedingungen können einen starken Einfluss auf die ambienten Luftschadstoffkonzentrationen haben, z.B. zeigen sich bei starkem Wind meist niedrige Schadstoffkonzentrationen.

Verteilung der PM₁₀-Schadstoffkonzentrationen.

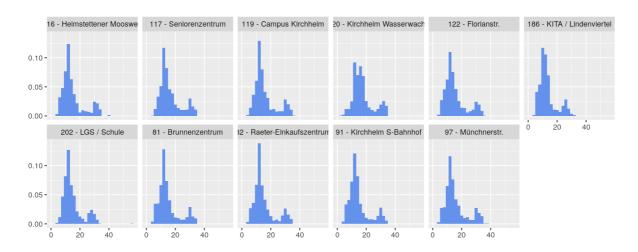


Abb. 19 Histogramme zur Darstellung der Häufigkeiten von PM₁₀-Schadstoffkonzentrationen (Stundenmittelwerte) an den verschiedenen Messpunkten.

PM₁₀ - Auswertung nach Winddaten [2]

Data: [May 2022; July 2022]

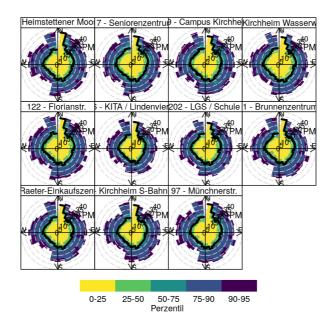


Abb. 20 Verteilung der Schadstoffkonzentrationen nach Windrichtung. Der Median nach Windrichtung wird durch die schwarze Linie angezeigt. Eine starke Ausbuchtung in eine Richtung gibt an, dass es bei Wind aus dieser Richtung gehäuft zu hohen Schadstoffkonzentrationen kommt.

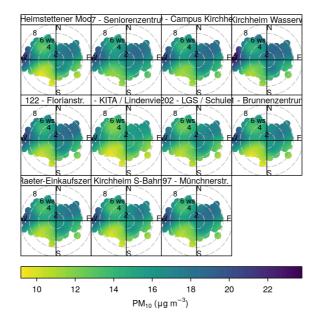


Abb. 21 Mittlere Schadstoffkonzentrationen in Abhängigkeit von Windrichtung und Windgeschwindigkeit. Der Mittelwert der Schadstoffkonzentration wird durch die Farbe angezeigt, die Windstärke durch Entfernung vom Zentrum. Bei lokalen Emissionsquellen sieht man hier meist eine dunkle Färbung im Zentrum, d.h. höhere Schadstoffkonzentrationen bei Windstille. Sieht man eine dunkle Ausbuchtung in eine Richtung deutet dies auf eine entfernte Quelle in dieser Richtung hin, da stärkerer Wind aus dieser Richtung mit höheren Schadstoffkonzentrationen einhergeht.

PM₁₀ - Mittelwerte

Geräte-ID	Minimum	Mittelwert	Maximum
81 - Brunnenzentrum	5	15	35
82 - Raeter-Einkaufszentrum	5	15	35

Geräte-ID	Minimum	Mittelwert	Maximum
91 - Kirchheim S-Bahnhof	5	15	34
97 - Münchnerstr.	5	16	39
116 - Heimstettener Moosweg	5	15	41
117 - Seniorenzentrum	5	17	35
119 - Campus Kirchheim	5	16	36
120 - Kirchheim Wasserwacht	3	18	35
122 - Florianstr.	5	16	37
186 - KITA / Lindenviertel	5	14	32
202 - LGS / Schule	5	15	57

Appendix

Messgeräte

Geräte-ID	Beschreibung
81	Brunnenzentrum
82	Raeter-Einkaufszentrum
91	Kirchheim S-Bahnhof
97	Münchnerstr.
116	Heimstettener Moosweg
117	Seniorenzentrum
119	Campus Kirchheim
120	Kirchheim Wasserwacht
122	Florianstr.
186	KITA / Lindenviertel
202	LGS / Schule

Allgemeine Informationen zu den gemessenen Luftschadstoffen

NO2

Stickoxide sind Nebenprodukte von Verbrennungsprozessen. Unter Sonneneinstrahlung sind sie maßgeblich für die Bildung von bodennahem Ozon und stellen auch eine Quelle für die Bildung von Feinstaub dar.

Hauptquellen	Straßenverkehr, Feuerungsanlagen, Lösungsmittel, Landwirtschaft
Auswirkungen auf die Gesundheit	Reizt und verengt die Bronchien, Intensivierung von Lungenerkrankungen, erhöht das Risiko von Diabetes und Herz/Kreislauferkrankungen
Betroffene Risikogruppen	Personen mit Lungenerkrankungen oder erhöhtem kardiovaskulärem Risiko, Kinder, Senioren, im Freien aktive Personen
Auswirkungen auf die Umwelt	Beeinträchtigtes Pflanzenwachstum, Überdüngung und Versauerung von Böden und Gewässern)

Grenzwerte Stundenmittelwert: 200µg/m³ (EU und WHO Grenzwert)

Jahresmittelwert: 40µg/m³ (EU und WHO Grenzwert)

О3

Ozon ist ein farbloses, giftiges Gas. In Bodennähe wird es bei Sonneneinstrahlung, durch photochemische Prozesse aus Stickoxiden und anderen flüchtigen organischen Verbindungen gebildet.

Hauptquellen Straßenverkehr, Feuerungsanlagen, Lösungsmittel, Landwirtschaft

Auswirkungen auf die

Gesundheit

Schädigung der Lunge, Intensivierung von Asthmasymptomen oder anderen

Lungenerkrankungen, Irritation der Atemwege

Betroffene Risikogruppen Personen mit Lungenerkrankungen, Kinder, Senioren, im Freien aktive Personen

Auswirkungen auf die Umwelt Beeinträchtigtes Pflanzenwachstum, Qualität und Quantität landwirtschaftlicher Produkte

Grenzwerte 8h Stundenmittelwert: 120µg/m³ (EU Zielwert)

8h Stundenmittelwert: 100µg/m³ (WHO Grenzwert)

PM2.5

Unter PM_{2.5} werden alle festen und flüssigen Partikel unterschiedlicher chemischer Zusammensetzung mit einem Durchmesser kleiner als 2,5 µm zusammengefasst.

Hauptquellen Straßenverkehr, Kraftwerke, Öfen/Heizungen von Wohnhäusern, Metallerzeugung,

Landwirtschaft, Bodenerosionen

Auswirkungen auf die

Gesundheit

Je nach Größe dringen Partikel bis in die Nasenhöhle, Bronchien oder den Blutkreislauf vor und

schädigen das Gewebe

Betroffene Risikogruppen Personen mit erhöhtem Risiko für Lungen-, Herz/Kreislauferkrankungen oder Diabetes, Kinder,

Senioren, im Freien aktive Personen

Grenzwerte 24 Stunden Mittelwert: 25 μg/m³ (WHO Grenzwert)

Jahresmittelwert: 25 μg/m³ (EU Grenzwert)
Jahresmittelwert: 10 μg/m³ (WHO Grenzwert)

PM10

Unter PM₁₀ werden alle festen und flüssigen Partikel unterschiedlicher chemischer Zusammensetzung mit einem Durchmesser kleiner als 10 µm zusammengefasst.

Hauptquellen Straßenverkehr, Kraftwerke, Öfen/Heizungen von Wohnhäusern, Metallerzeugung, Landwirtschaft,

Bodenerosionen

Auswirkungen auf die

Gesundheit

Je nach Größe dringen Partikel bis in die Nasenhöhle, Bronchien oder den Blutkreislauf vor und

schädigen das Gewebe

Betroffene Risikogruppen Personen mit erhöhtem Risiko für Lungen-, Herz/Kreislauferkrankungen oder Diabetes, Kinder,

Senioren, im Freien aktive Personen

Grenzwerte 24 Stunden Mittelwert: 50 μg/m³ (EU und WHO Grenzwert)

Jahresmittelwert: 40 μg/m³ (EU Grenzwert) Jahresmittelwert: 20 μg/m³ (WHO Grenzwert)

Quellen

- [1] Deutsche Wetter Dienst, Wetterdaten, (2021). https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html (https://www.dwd.de/DE/leistungen/cdc/climate-data-center.html).
- [2] D.C. Carslaw, K. Ropkins, Openair an r package for air quality data analysis, Environmental Modelling & Software. 27–28 (2012) 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 (https://doi.org/10.1016/j.envsoft.2011.09.008).